
 

 

 

Introduction 

It is important to confirm the validity and reliability of the results returned by the 

tool. Here, we devise experiments with a large set of instances comprised of different 

probability distributions and we also compare the results with benchmarks.  

Experiments  

This section describes the tests performed to analyze the performance of the 

proposed method and compare it with a Johnson’s method and Burr Type XII 

Distribution. The objective is to compare the performance of CP1 and CP2. Additionally 

this topic also gives an illustrative case study from electronic industry. 

4.1 – Validation with the benchmark 

In order to test the methods, 5 instances with populations of 100000 values were 

created with the following features: 

• Population 1: Normal distribution, with 𝜇 = 100.12 𝑎𝑛𝑑 𝜎 = 19.74 

• Population 2: Lognormal distribution, with 𝜇 = 100.12 𝑎𝑛𝑑 𝜎 = 20.12 

• Population 3: Lognormal distribution, with 𝜇 = 100.12 𝑎𝑛𝑑 𝜎 = 39.89 

• Population 4: Gamma distribution, with 𝜇 = 100.02 𝑎𝑛𝑑 𝜎 = 14.16 

• Population 5: Exponential distribution, with 𝜇 = 100.30. 

• Population 6: xxxx, with 𝜇 = 100.12 𝑎𝑛𝑑 𝜎 = 20.12 

• Population 7: xxx distribution, with 𝜇 = 100.12 𝑎𝑛𝑑 𝜎 = 39.89 

• Population 8: xxx distribution, with 𝜇 = 100.02 𝑎𝑛𝑑 𝜎 = 14.16 

• Population 9: xxxx distribution, with 𝜇 = 100.30. 

 

These populations were created through the following Matlab functions, 

respectively: randn, lognrnd, lognrnd, gamrnd and exprnd. 

The accuracy of the calculation of the probability 𝑃(𝑋 ≤ 𝑥) is also related to the 

distance from 𝑥 to the mean, therefore each population is evaluated in 13 points: from 

the point μ − 3σ to the point μ + 3σ with increment of 0.5σ. It is used 5 different sample 

sizes (𝑛): 10, 20, 30, 50 and 100. Because we know the population, it is possible to 

compute the error for the probability calculations of the methods (Burr, Johnson, UPC). 

For each method, we perform 29250 calculations (9 populations, 5 sample sizes, 13 

values for 𝑥, 50 replicas). 

The figures 5 and 6 give the average errors for the PC1 and PC2 methods, 

respectively, for the all 5 populations together. The vertical axis gives the absolute 

percentage error, the horizontal axis gives the sample sizes, and for each sample size the 

average errors for the 50 runs performed for each 𝑥 value is presented. The values 𝑥 are 

presented here as the distance from the mean in terms of standard deviation, it means 

𝑥 = (𝑥´ − 𝜇)/𝜎. So, calling 𝑥´ the original value from the data set,  𝑥 is the transformed 

value of 𝑥´ and it goes from −3 𝑡𝑜 3. 



 

 

 

 

FIGURE 5: Mean error for the proposed method (PC1) 

In the figure 5 it is possible to see how the errors get smaller as the sample size 

increases. For  𝑛 = 20, the mean error for 𝑥 = 0 is about 9%, and for 𝑛 = 500,at the 

same point, the mean error for the same point is about 1.8%. Another observation from 

the figure 5 is that the error gets smaller close to the extremal points 𝑥 = −3 𝑎𝑛𝑑 𝑥 = 3, 

for these 2 points the errors were very small for all sample sizes. 

 

FIGURE 6: Mean error for the benchmark (PC2) 

The figure 6 presents for 𝑛 = 20 evaluated at 𝑥 = 0 a mean error of 8.1%, smaller 

than the presented by figure 5 evaluated at the same point.  From figures 5 and 6 it is 

possible to see that the behavior of the error over the sample sizes is similar. By these 

figures, it is not possible to see any significant difference between the 2 methods. 

A test for equal variance was performed and the 95% Bonferroni Confidence 

Intervals for Standard Deviations is presented in the table 4. The null hypothesis assumes 

that all variances are equal and the significance level is 𝛼 = 0.05. [consider to do same 

test of the Juergen paper]. [Here I just wanted to show it is not possible to say one is 

better than other. Use tests from thesis paper + summary of the results for the error: mean, 

, 95th. [not max to not max user afraid, plot of the intervals] 



 

 

 

 

TABLE 4: Variance Test 

Method N StDev CI 

PC1 19500 3.41 (3.27; 3.55) 

PC2 19500 3.10 (2.99; 3.22) 

 

The table 4 shows that the intervals do not overlap indicating that the 

corresponding standard deviations are significantly different. This is confirmed by the 

results of two statistic tests, Multiple Comparisons and Levene, returning both p-value 

equal to zero. 

To compare the means, the ANOVA was performed for different variances as 

confirmed previously. The interval plots are presented in the table 5. The null hypothesis 

assumes that the means are equal and the significance level is 𝛼 = 0.05. 

 

TABLE 5: ANOVA 

Method N Mean StDev 95% CI 

PC1 19500 2.38 3.41 (2.32; 2.44) 

PC2 19500 2.12 3.10 (2.06; 2.17) 

 

The table 5 shows that the intervals do not overlap indicating that the mean is 

different. This is confirmed by Welch’s Test that returns p-value equal to zero. Table 5 

shows that the mean and standard deviation for the errors while comparing both methods 

present a small difference. 

The figure 7 exhibits the interval plots comparing the mean error of PC1 and PC2 

for the 5 instances, separately. 

 



 

 

 

 

FIGURE 7: Interval plot 

The figure 7 shows there is overlap between the 2 methods for a majority of the 

instances. It is not seen any big difference between the 2 methods. [maybe not necessary 

for UPC website] 

 Let’s show more details regarding the population 5 (Exponential distribution) due 

to the fact this distributions presents a higher variation and asymmetry while compared 

with the others. The histogram of this population is presented in the figure 8. 

 

 
FIGURE 8: Histogram for the population 5 (Exponential distribution) 

 

The figures 9 and 10 present the mean error for the population 5, with sample size 

of 50 and 100 respectively.  
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FIGURE 9: Mean error for the Exponential Distribution with sample size 50 

 

The figure 9 shows the error is close to zero for the both method (proposed and 

benchmark) in the region from -3 to -1.5 standard deviations. It happens because in this 

region the values are in the range [-175.0,-39.9], that is the values are negative. After 

that, the error start growing and it achieves the maximum value approximately in region 

[-0.5, 0.0], then it starts to get smaller. For the 13 points, the proposed method presented 

smaller mean errors practically in all the 13 points, especially in the area with the biggest 

error, for the point -0.5, the mean error for the proposed method was 4.59 and for the 

benchmark was 5.68. 

 

 
FIGURE 10: Mean error for the Exponential Distribution with sample size 100 

 

Similar behavior is observed in the figure 10. Left side with errors close to zero, 

middle area with the biggest errors, and the right side with descending errors. One 

explanation for such behavior is that from the left side to the middle the exponential 

distribution grows quickly, so it is more difficult to capture this transition, resulting in 

bigger error. The exponential distribution presents a long tale to the right side; it means 

the values change smoothly in this zone, what is better captured by the regressions. 

Considering the results presented in the pictures 5,6,9 and 10, it is observed that the 

absolute error in terms of percentage points is descending in the right and left side of the 
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distribution, therefore it is seen no reason to have a different behavior in areas without 

the range [-3, +3] standard deviations. Another point here is that once the cumulative 

function is built, it has a defined shape, and it is one reason the method is powerful. 

Naturally, the results presented here are valid for populations with similar features to the 

five populations used in the experiments. Still in the picture 10, for sample size 100, the 

results between the 2 methods were closer. The proposed method presented smaller 

errors in the middle zone and bigger error in the right side. 

 

All the 39000 calculations performed in the experiments were also important to 

determine empirically the estimative of the confidence interval given by the proposed 

method. The table 6 shows the proportion of results that fell within an error interval of 

± 5 percentage points. The rows give the behavior of the errors along different sample 

sizes and the columns along different evaluation points (as number of standard deviation 

from the true mean of the population). [maybe not necessary for UPC website] 

 

TABLE 6: Confidence Level for ± 𝟓% CI 

St.Dev. n=20 n=30 n=50 n=70 n=100 n=200 n=500 

-3 100% 100% 100% 100% 100% 100% 100% 

-2,5 100% 100% 100% 100% 100% 100% 100% 

-2 99% 100% 100% 100% 100% 100% 100% 

-1,5 87% 94% 97% 97% 99% 99% 100% 

-1 67% 76% 85% 84% 90% 94% 98% 

-0,5 63% 72% 80% 88% 88% 92% 96% 

0 53% 65% 77% 85% 90% 94% 98% 

0,5 55% 68% 71% 78% 83% 86% 89% 

1 69% 76% 84% 88% 90% 93% 97% 

1,5 90% 94% 98% 98% 99% 100% 100% 

2 97% 99% 99% 100% 100% 100% 100% 

2,5 100% 100% 100% 100% 100% 100% 100% 

3 100% 100% 100% 100% 100% 100% 100% 

 

In the table 6, it is clear to notice that the higher the sample size the higher the 

confidence level. And also, the close to ±3 standard deviations, the higher the confidence 

level. 

 

4.2 – Application of the proposed method for real field data [maybe not necessary for 

UPC website, examples in another file] 

In order to illustrate the application of the method, real field data from the 

electronic industry was chosen as a case study. Data from the manufacturing plant is 

gathered and analyzed. The company has an assembly line of one specific model of 

sensor used in refrigerators. That is a new model with no historic data. The sensor should 

be activated when the temperature is ≥ 80.4 degree Celsius (°C). An analyst collected a 

sample of 20 units and the manager wants to know what is the probability of taking a 



 

 

 

sensor that will be activated without the specification range; it means 𝑃(𝑋 ≤ 80.4 ).  The 

analyst has no idea of the shape of the distribution and no statistical knowledge to go 

deeper into this analysis.  

The machine is able to reject automatically the sensors activated without the 

specification. It is important to estimate the yield of this model because it defines the 

expected level of rework the operation will have to do, affecting the cost and the planning 

of the operation. The data with the values of the sample collected by the analyst is in the 

table 7 and its histogram in the figure 11. 

 

 

 

TABLE 7: Sample (degree Celsius °C) 

82.00 96.48 84.51 119.75 

112.69 95.12 115.74 107.86 

101.35 82.05 128.18 103.89 

96.26 84.15 89.32 105.60 

105.83 80.94 138.56 101.02 
 

 
FIGURE 11: Histogram 

 

 

Considering all samples had values greater than the specified value, a very basic 

analysis indicates that 𝑃(𝑋 < 80.4) = 0 20⁄ = 0%.  The histogram shows a significant 

skewness to the left, indicating the probability distribution might not be normal. The table 

8 gives the results using the proposed method and the benchmark. During 1 month the 

analyst counted the number of rejected and approved sensors. After this time, 1534 units 

were produced, 339 rejected, so the actual yield was 22.1%.  

 

TABLE 8: Calculation 

Method Calculated Error 

Direct 0% 22.10% 

PC1 18.7% 3.40% 

Benchmark 16.3% 5.80% 

 

The table 8 shows the probability calculated and the errors based on the actual 

rejection. Naturally, the yield during the month depends on others variables such as raw-

material, equipment maintenance, setup of the machine by the user and others, but it is a 

reference to analyze how accurate was the probability calculation. Another point is the 

small value of the sample, just 20. For this sample size, and considering the point 𝑥 =
80.5 is about −1 standard deviation from the mean, the table 6 gives 68% confidence 

level for ±5% 𝐶𝐼. In this context, it is plausible to say that the results are coherent.  

 

 



 

 

 

5 – Concluding Remarks and Further Research 

This research proposes a practical method to calculate probabilities. The method 

was validated with a benchmark, tested with different probability distributions, and 

finally it was applied to a real case.  

The results presented a small difference between the proposed method and the 

benchmark for the accuracy of the probability calculations. The method has showed to 

have enough flexibility to deal with different density functions and the empirical 

confidence interval table gives important and positive information about the quality of 

the calculations. Even for the Exponential distribution with its peculiar features in term 

of variation and asymmetry, the results were competitive.   

The application of the method in real case was able to illustrate how simple and 

useful the method can be on the field. 

The method is easy to be implemented and it does not require statistical 

knowledge from the user. It is possible not only to evaluate the probability at any point, 

but also have an estimative of the quality of the result through the confidence interval 

table. Basically, if the user wants to increase the confidence level of the results, it is 

necessary to increase the sample size. 

Considering the main goal of this paper was to develop a simple and effective 

method to calculate probabilities, the paper achieved its objective. 
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